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Abstract. The optical properties of Bragg quantum wells are studied for exciton confinement under
center-of-mass quantization. A variational model of Wannier exciton envelope function, that embodies
the correct boundary conditions for center-of-mass, is adopted for calculation. The present non-adiabatic
exciton model is compared with adiabatic results and with heuristic “hard sphere” model. The radia-
tive self-energy of a single-quantum well (SQW) and multi-quantum wells (MQWs) are computed in the
semiclassical framework, and in effective mass approximation, by self-consistent solution of Schroedinger
and Maxwell equations. This microscopic solution is free from “fitting” parameter values, except for the
non-radiative broadening, and also the exciton dead-layer and the additional boundary condition are not
taken ad hoc, but come coherently from the variational principle and self-consistent Schroedinger-Maxwell
solution. Dispersion curves of exciton-polariton propagating in a MQW, under Bragg condition, are stud-
ied by selected numerical examples. The case of optical gap in correspondence of higher excited states
is studied, and, moreover, the interesting effect of gap enhancement or inhibition, in correspondence of
non-resonant Bragg energy, will be addressed.

PACS. 78.67.De Quantum wells – 71.36.+c Polaritons (including photon-phonon and photon-magnon
interactions) – 71.35.Cc Intrinsic properties of excitons; optical absorption spectra – 78.67.Pt Multilayers;
superlattices

1 Introduction

Recently, a new class of photonic crystals, the so called
resonant photonic crystals (RPCs), was proposed, start-
ing from the study of super-radiant saturation in quan-
tum wells under Bragg condition [1–3]. In these systems,
at variance of the normal photonic crystals proposed by
Yablonovich [4], the dielectric function modulation is due
not only to the local background dielectric function, but
also to the dispersive part of non-local Wannier exciton
susceptibility. Obviously, this new class of systems can not
show the scalability of the optical properties, observed for
normal photonic crystals. This missed property can, how-
ever, be largely compensated by “extreme” optical prop-
erties, due to the strong enhancement of the non-local
dispersive part of the dielectric function for light energy
close to some transition energies in the electronic gap (ex-
citons). Therefore, this new class of systems (RPCs) are
also promising for device applications.

Recently, the optical properties of Wannier excitons,
strongly confined in MQWs, and under λ/2 Bragg condi-
tion, have received large attention in the literature [5–13],
due to their well-known super-radiant property, while a
few is published, at our knowledge, for weak confinement
regime, where usually many exciton-states are present in

a e-mail: andrea.dandrea@isc.cnr.it

the well [11]. The small number of papers, devoted to the
optical properties of excitons under center-of mass quanti-
zation, is mainly due to the difficulty of practical realiza-
tion of these kind of superstructures, and moreover, from
the theoretical point of view, it is also due to the scarce
number of simple and reliable microscopic exciton models
available in the literature [14,15].

It is well-known, that for large quantum wells the ex-
citon center-of mass wave vector is very sensitive to the
“effective volume” where the exciton is spatially confined;
this volume is roughly obtained from the nominal thick-
ness reduced by two times the “dead layer” depth [15].
While this depth value is crucially important for the opti-
cal response properties, in particular it affects the “addi-
tional boundary conditions” and the polariton self-energy,
its contribution to the exciton energy becomes negligible
small by increasing the quantum well thickness. Moreover,
since Wannier exciton is a composite boson, the exciton
mass ratio strongly influence its dynamics [14]; in par-
ticular, it shows two interesting limits, namely: (i) for
µ/M ≈ 0.25 (mh ≈ me) the so called “positronium” limit;
and (ii) for µ/M → 0 (mh � me) that is the “hydrogenic”
limit, where µ and M are reduced and total exciton mass
respectively.

Recently, an “exact” solution for exciton confined in a
large quantum well, under adiabatic approximation, was
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proposed by Combescot et al. in reference [14]. The pos-
sibility that Wannier exciton can undergo non-adiabatic
behaviour also in rather large confined systems, has given
a long lasting debate in the literature [14–16], and, in our
opinion, it is still an open problem.

In the present calculation we adopt a simple non-
adiabatic microscopic model of Wannier envelope function
under weak confinement regime given in reference [15].
This non-adiabatic exciton model embodies all the rel-
evant physical properties present in a quantum well,
namely: many exciton states due to the center-of mass
quantization, and intrinsic dead-layer at well-barrier in-
terfaces.

The aim of the present work is to discuss the fun-
damental properties of the optical response of Wannier
exciton under center-of-mass quantization in a Bragg su-
perlattice, coming from a microscopic self-consistent the-
ory. Therefore, it can be divided in two parts, namely the
study: (i) of the exciton properties under weak confine-
ment regime by variational solution of the Wannier exciton
model; and (ii) of the optical properties and the polariton
dispersion curves for MQWs under Bragg condition.

In the present calculation, while exciton states are
given in the effective mass approximation by variational
minimization, the radiative self-energy in multi-quantum
wells will be computed in the semiclassical framework
by self-consistent solution of Schroedinger and Maxwell
equations. It is well-known that the present microscopic
solution is free from fitting parameters (except for the
non-radiative broadening value), and also the presence of
an intrinsic dead-layer in the exciton envelope function,
and the propagation of additional waves in the spatial dis-
persive medium (that usually requires the so called “addi-
tional boundary conditions”) are not introduced ad hoc,
but come from the variational principle and the self-
consistent Schroedinger-Maxwell solution.

The optical gap, in correspondence of higher exciton
states, and the case of Bragg periodicity, out of reso-
nance with respect to exciton states, will be addressed
by selected numerical examples. Finally, the interesting
property of photonic gap inhibition, induced by the com-
petition between photonic gap and polaritonic splitting,
underlines the new possibility for the gap tailoring shown
by this class of resonant photonic crystals.

In Section 2, the variational exciton envelope function
of reference [15], well suited for describing a Wannier exci-
ton under weak quantum confinement regime, is revisited.
The sound agreement of the former model with heuristic
“hard sphere model”, and with adiabatic solution [14] is
pointed out in Section 3. In Section 4 the optical response
of a single-quantum well and the dispersion curves of a
multi-quantum wells under Bragg condition are derived
analytically by a semiclassical self-consistent model in the
effective mass approximation. In Section 5 the Bragg sys-
tem is studied by selected numerical examples, and the
interesting topic of gap tailoring in 1D resonant photonic
crystal is addressed. The main results of the work are sum-
marized in Section 6.

2 Non-adiabatic Wannier exciton in a slab:
a variational solution revisited

Now we derive the non-adiabatic model of reference [15],
where a Wannier exciton is confined in a slab with thick-
ness value L many times the 3D Bohr radius (L = α aB

and α > 10), in order to clarify the approximations
involved.

Let us start by considering a Wannier exciton trav-
elling in a bulk (L → ∞). The envelope function can
be given by a simple product of relative and center-of-
mass motion of the electron-hole, namely: Ψex(�r, �R) →
ϕnml(�r) φK(Z) ei �K‖·�R‖ , where ϕnml(�r) is the hydrogenic
function of the relative motion, with coordinate �r =
�re − �rh, while the total plane-wave ei( �K‖·�R‖±K Z) (for
φK(Z) → e±iKZ) describes the center-of-mass travelling
motion components (in-plane and along Z-axis respec-
tively), where Z is the center-of-mass coordinate.

In the above limit, the exciton energy, in cylindrical
coordinates, is: En = Egap + εn + EZ + E‖, obtained by
taking the top of the valence band as zero point energy,
where Egap is the valence-conduction energy gap at Γ
point of valence-conduction band edge, and εn = −R∗/n2

is the relative motion energy, and EZ + E‖ is the energy
of the center-of-mass motion, with EZ = �

2K2/2M and
E‖ = �

2K2
‖/2M respectively. Therefore, the K-values are:

Kn =

√
2M

�2
(E − En) (1)

where Kn is real, for E > En, and imaginary for E < En.

Now, let us consider an exciton “perfectly” confined
into a well of L thickness (where Z-axis is the growth
direction). The Schroedinger equation of the Wannier ex-
citon, in the two band model and in effective mass approx-
imations, shows the hydrogenic form:

Ĥex Ψ(�r, Z) = εex Ψ(�r, Z) (2)

Ĥex = −�
2

2
∂

∂Z

1
M

∂

∂Z
�∇Z − �

2

2
�∇�r

1
µ

�∇�r − e2

εBr
(3)

obtained by neglecting the short range electron-hole ex-
change contribution (this term will be added as a pertur-
bation in a second step, if necessary), and where µ and
M are the reduced and the total mass of Wannier exciton
respectively, and εex is exciton eigenvalue. The exciton en-
velope function must undergo to the so called “no-escape
boundary conditions” [15], well suited for infinite poten-
tial confinement. Therefore, the exciton peak energy is:

Eex( �K‖) = Egap + εex +
�

2

2M
K2

‖ . (4)



A. D’Andrea and D. Schiumarini: Bragg quantum wells in weak confinement regime 89

The exciton trial envelope function can be expanded in an
hydrogenic basis set [15],

Ψ �K‖
(�r, �R) =

ei �K‖·�R‖
∑
nml

[
anml e

iKnZ + bnml e
−iKnZ

]
ϕnml(�r), (5)

where the origin of the Cartesian axes is taken at the cen-
tre of the well slab (−L/2 ≤ Z ≤ L/2).

For photon energy E, greater than the lowest energy
level 1S, from equation (5) we can single out the corre-
sponding contribution (where nml → n),

Ψ �K‖
(�r, �R) =

{[
a1 eiK1Z + b1 e−iK1Z

]
ϕ1(r)

+
∑
n>1

[
an eiKnZ + bn e−iKnZ

]
ϕn(r)

}
ei �K‖·�R‖ . (6)

Now, since the system is invariant under inversion opera-

tor: P̂ ≡
{

z → −z
Z → −Z

, the total envelope functions can be

separated in even and odd components: P̂ Ψ �K‖
= ±Ψ �K‖

,
namely:

Ψeven(�r, Z) = cos(K1Z)ϕ1(r) +
∑
n>1
even

bn

[
ePnZ

+e−PnZ
]

ϕn(r) +
∑
n>1
odd

bn

[
e−PnZ − ePnZ

]
ϕn(r)

Ψodd(�r, Z) = sin(K1Z)ϕ1(r) +
∑
n>1
even

bn

[
e−PnZ

− ePnZ
]

ϕn(r) +
∑
n>1
odd

bn

[
ePnZ + e−PnZ

]
ϕn(r)

where, K1 =
√

2M
�2 (E − Egap − ε1 − E‖) and Pn = iKn =√

2M
�2 (Egap + εn + E‖ − E) for n > 1.
Finally, even and odd envelope function components

can be rewritten in a compact form:

Ψeven(�r, Z) = cos(K1Z)ϕ1(r)+ 2
∑
n>1
even

bn cosh(P
n
Z) ϕn(r)

− 2
∑
n>1
odd

bn sinh(P
n
Z) ϕn(r) (7a)

Ψodd(�r, Z) = sin(K1Z)ϕ1(r) − 2
∑
n>1
even

bn sinh(P
n
Z) ϕn(r)

+ 2
∑
n>1
odd

bn cosh(P
n
Z) ϕn(r). (7b)

The analytical exciton model is based on two main ap-
proximations, namely: (i) the exciton is confined between
infinite potential walls, therefore, the so called “no-escape
boundary conditions” must be imposed; and (ii) all the
hydrogenic virtual states are grouped in N-times degener-
ate average state En̄, at the limit of the exciton contin-
uum. The (ii) point (one-pole approximation) can be justi-
fied because the evanescent states should be very far from
in energy with respect to the travelling one (En̄ → ∞).
Therefore, the quantity of equation (7a) becomes:

2
∑
n>1
even

cosh(PnZ) bn ϕn(r) ≈ cosh(P̄eZ) 2
∑
n>1
even

bn ϕn(r)

= cosh(P̄eZ) Φee(�r),

and analogously for the other quantities of equations (7a)
and (7b): Φeo(�r) , Φoe(�r) and Φoo(�r). Now, since the equa-
tions (7a) and (7b) must fulfil the no-escape boundary
conditions:

Ψα(ze =±L/2)=Ψα(zh = ±L/2)=0 for α=even, odd,
(8)

we obtain a system of four equations that can determine
the four unknowns Φα β(�r) (α, β = even, odd).

Finally, exciton envelope functions assume the follow-
ing simple analytical form [15],

Ψeven(�r, Z) = Ne ge(z, Z) ϕ1(r)

and
Ψodd(�r, Z) = No go(z, Z) ϕ1(r) (9a)

ge(z, Z) = cos(K1Z) − cosh(P̄e Z)Fee(z)

+ sinh(P̄eZ)Feo(z)

go(z, Z) = sin(K1Z) + sinh(P̄o Z)Foe(z)

− cosh(P̄oZ)Foo(z) (9b)

where Nα are the normalization constants, and the in-
verse of evanescent coefficients 1/P̄α = δα are the so called
“transition layers” or “intrinsic dead-layers”, while the
functions Fαβ(z) = Φαβ(�r)/ϕ1(r), obtained by the ful-
filling of the no-escape boundary conditions, are:

Fee(z ≥ 0) =
{
cos (K1 Z1) sinh

(
P̄eZ2

)
− cos (K1Z2) sinh

(
P̄eZ1

)}
/ sinh

[
P̄e(Z2 − Z1)

]
(10a)

Feo(z ≥ 0) =
{
cos (K1 Z1) cosh

(
P̄eZ2

)
− cos (K1Z2) cosh

(
P̄eZ1

)}
/ sinh

[
P̄e(Z2 − Z1)

]
(10b)

for boundary functions: Z1(z) = αez − L/2 and Z2(z) =
−αhz + L/2 where 0 ≤ z ≤ L, and the electron and
hole mass ratios are respectively: αe = me/M and αh =
mh/M . Analogously for: Z1(z) = αez + L/2, Z2(z) =
−αhz − L/2 and −L ≥ z ≥ 0.
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Finally, by imposing the continuity of the first deriva-
tive at z → 0±, we obtain the dispersion relationship for
even wavefunctions [15]:

Xe tg [Xe] + Ye tgh [Ye] = 0

where
Xe = K1L/2, Ye = P̄eL/2. (11)

The same procedure can be adopted for computing Foe(z)
and Foo(z), that for 0 ≤ z ≤ L are:

Foe(z ≥ 0) =
{
sin (K1 Z1) cosh

(
P̄oZ2

)
− sin (K1Z2) cosh

(
P̄oZ1

)}
/ sinh

[
P̄o(Z2 − Z1)

]
(12a)

Foo(z ≥ 0) =
{
sin (K1 Z1) sinh

(
P̄oZ2

)
− sin (K1Z2) sinh

(
P̄oZ1

)}
/ sinh

[
P̄o(Z2 − Z1)

]
(12b)

and the dispersion relationship is:

Yo tg [Xo] − Xo tgh [Yo] = 0

where
Xo = K1 L/2, Yo = P̄o L/2. (13)

Notice, that the eigenvalues of center-of-mass wave vector
K1(m) are m = 1, 3, 5. . . and m = 2, 4, 6. . . for even and
odd envelope functions respectively [15].

Finally, an extrinsic dead-layer, as proposed by Hop-
field (due to the interface disorder effect, image poten-
tial, . . . ), can be added in order to obtain a sound agree-
ment with experimental spectra [16–19].

2.1 Analytical model solution

In order to compute the optical response of the sys-
tem, let us consider the exciton envelope functions that
show oscillator strengths different from zero (even solu-
tions m = 1, 3, 5, . . . ). Notice, that odd solutions (m =
2, 4, 6, . . . ), for symmetry reasons, show zero oscillator
strengths, but, due to the spatial dispersion effect, their
polariton self-energy is different from zero; in any case
they are very small with respect to the even ones. There-
fore, the odd exciton states will be neglected in the present
optical calculations.

The non-normalized exciton envelope function is,

Ψm(�r, Z) = gm(z, Z)ϕ1(r)

where ϕ1(r) = exp(−r/a)/(π a3)1/2 is the 1S hydrogenic
wavefunction, and a is the effective Bohr radius of Wannier
exciton,

gm(z, Z) = cos(KmZ) − Fee(z; Km) cosh(P̄eZ)

+ Feo(z; Km) sinh(P̄eZ) (14)

is the confinement function that couples relative and
center-of-mass motion of the exciton, and Km is the eigen-
value of the 1S center-of-mass wave vector (for m =
1, 3, 5, . . . ).

The variational parameter values are obtained by
minimizing the first momentum of the Hamiltonian for
the lowest exciton energy (m = 1) with respect to the
effective Bohr radius (a), and the inverse of the transition
layer (P̄e = P = 1/δ) respectively,

〈Ψ1| Ĥex |Ψ1〉
〈Ψ1| |Ψ1〉 = min. (15)

Finally, the inverse of the square normalization constant
and the first momentum of exciton Hamiltonian, in
cylindrical coordinates, are given respectively:

〈Ψ1| |Ψ1〉 = 4π

L∫
0

dz

∞∫
0

ρdρ ϕ2
1

(√
ρ2 + z2

) Z2(z)∫
Z1(z)

dZ g2
1
(z, Z)

= 4π

L∫
0

A(z)G0(z) I0(z) dz (16a)

〈Ψ1| Ĥ |Ψ1〉 = E(a) 〈Ψ1| |Ψ1〉 + 4π

L∫
0

{[
�

2

µa
− e2

εB

]
G0(z)

− �
2

2M
A(z)G1(z) − �

2

2µ
[A(z)G2(z)

+2B(z)G3(z)]
}

I0(z) dz (16b)

where E(a) is the energy of the relative motion of the
1S propagating exciton, the first term in curly bracket
is its correction (due to the quantum confinement), the
second term is the kinetic energy of center-of-mass, and
the latter term is the non-adiabatic contribution to the
exciton energy. Notice, that while the functions Gi(z)
with i = 0, 1, 2, 3 are due to the confinement function of
equation (14), the function A(z), B(z) and Io(z) come
from the in plane integration of the exponential function:
exp(−2r/a).

Finally, all the quantities necessary for computing en-
ergy minimization, are

E(a) = − �
2

2µ

1
a2

; I0(z) =
1

2πa2
e−2|z|a;

A(z) = |z| + a/2; B(z) = −z/a, (17)

G0(z) =

Z2(z)∫
Z1(z)

(g1(z, Z))2 dZ ;

G1(z) =

Z2(z)∫
Z1(z)

g1(z, Z)
∂2g1(z, Z)

∂Z2
dZ; (18)

G2(z) =

Z2(z)∫
Z1(z)

g1(z, Z)
∂2g1(z, Z)

∂z2
dZ;

G3(z) =

Z2(z)∫
Z1(z)

g1(z, Z)
∂g1(z, Z)

∂z
dZ
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given in Appendix A. The former quantities are written
down in a more explicit analytical form than those re-
ported in reference [15], in order to strongly improve the
numerical accuracy of computation.

It is well-known, that exciton wave vector, for well
thickness many times the Bohr exciton radius, can be
given by the heuristic equation of the center-of mass quan-
tization, namely:

K1(m) = mπ/(L − 2δ) where m = 1, 2, 3, . . ., (19)

with exciton energy: Em = Egap−R∗+ �
2

2M K2
1
(m)+ �

2

2M K2
‖ ,

where R∗ is the exciton Rydberg value.
Now, performing the energy minimization in a rather

large quantum well (L = 16 a, εB = 9.98, µ/M = 0.063 <
0.25), we obtain the intrinsic dead-layer value as large as
two Bohr radii (δ = 57.0 nm, for an effective Bohr radius
a = 28.435 nm). Notice that the corresponding center-of-
mass wave vector value of equation (11), is a bit different
from the heuristic result of equation (19) (in fact we ob-
tain K1 = 4.691 × 10−4 a.u. and K1 = 4.805 × 10−4 a.u.
respectively). Indeed, by neglecting in equation (16b) the
non-adiabatic contribution, the intrinsic dead-layer depth
is strongly reduced to one Bohr radius (δ = 30.5 nm),
while the exciton energy is barely unchanged (a few of
tenths of µeV of variation). In this limit, the center-
of mass wave vector, computed by equation (11), be-
comes in rather sound agreement with the former heuris-
tic result of equation (19) (K1 = 4.155 × 10−4 a.u., and
K1 = 4.166 × 10−4 a.u. respectively).

In conclusion, while the intrinsic dead-layer depth is
very sensitive to the exciton quantization, also for rather
large quantum wells, the exciton energy is vanishingly af-
fected by the dead-layer value. Indeed, the heuristic “hard
sphere exciton” model of equation (19) can be easily re-
covered by the analytical model adopted in the present
calculation.

3 Wannier exciton under weak confinement

The variational computation is performed by a numerical
one-dimension integration on the relative coordinate along
the Z-axis quantization (see Appendix A). The parameter
values adopted for the computation are:

me = 0.077 mo; mh = 0.160 mo;
Sample(A) : µ/M = 0.22; εB = 12.1;

aB = 12.332 nm; Ryd = −4.830 meV

me = 0.038 mo; mh = 0.262 mo;
Sample(B) : µ/M = 0.11; εB = 9.98;

aB = 15.914 nm; Ryd = −4.533 meV

rather close to InP (A) and GaAs (B) semiconductors,
respectively.

The dead layer and exciton effective radius values, as a
function of well thickness, are given in Figures 1a and 1b

(a)

(b)

Fig. 1. Exciton variational parameters as a function of well
thickness. Sample (A) and (B) are reported in Figures 2a
and 2b respectively. Effective Bohr radius (a) and transition
layer depth (δ) are shown by open squares and open circles
respectively.

for sample (A) and (B) respectively. Notice, that for
physical parameter values chosen, the mass ratio of sam-
ple (A) is closer to the positronium limit (µ/M = 0.25)
than that of sample (B). Therefore, for very large quan-
tum wells the dead-layer of sample (A) is of the order of
bulk exciton radius, while the dead-layer of sample (B)
is about two times greater than that of sample (A). We
would like to underline that these results, obtained for
sample (A), are similar to those discussed in reference [15],
while the results of sample (B), concerning rather large
intrinsic dead-layer depth, have not been reported before.
Moreover, the present results are also in agreement with
the näıve “hard sphere exciton” model. In fact, in the clas-
sical model the positronium atom can be represented as an
e–h rotating around the center-of-mass of the system, that
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is located in the middle between the e–h couple; therefore
the dead-layer, coming from the no-escape boundary con-
ditions of equation (9), is about one Bohr radius, while,
for the “planetary” motion of an hydrogenic atom, the
dead-layer becomes two times the Bohr radius.

The exciton eigenvalues of the lowest energy state
(m = 1), as a function of well thickness, are shown in
Figures 2a and 2b for sample (A) and (B) respectively.
Notice, that the zero of the exciton eigenenergies is taken
at the bottom of the conduction band [15]. Sample (B)
shows a faster convergence to the 2D limit than sam-
ple (A), and also this effect is due to the different en-
ergy partition between relative and center-of-mass mo-
tion of the two systems. In fact, in the hydrogenic limit,
the exciton kinetic energy is essentially embodied into the
relative motion, while in the positronium limit, relative
and center-of-mass motion are both effective, till to the
2D value, where the center-of mass motion is completely
quenched. In the insets of Figure 2, the even m = 1, 3, 5, 7
exciton states are also shown for a large range of ener-
gies. These rather unphysical energies come from the in-
finite walls model adopted for quantum exciton confine-
ment where no upper energy limit is embodied (except
for the evanescent state that will be in energy far from
the propagating one). In order to obtain sensible results
for higher exciton energy states a more refined propagat-
ing envelope function is necessary, where also the sec-
ond (n = 2) hydrogenic functions become propagating.
This more refined model can be obtained by substitution:
ϕ1S(�r) → ϕ1S(�r) + α ϕ2S(�r) + β ϕ2P (�r) in equations (7a)
and (7b), with α and β variational parameters [20].

In Figure 3 the exciton dead-layer as a function of
the mass ratio µ/M in the Bohr radius unit is shown.
The results, obtained with the present non-adiabatic vari-
ational model, are compared with the adiabatic ones of
reference [14]. The agreement between the two different
models is sound, and the qualitative interpretation, based
on the näıve hard sphere exciton model, is confirmed for
both the models [21]. In conclusion, the present analyti-
cal model shows the correct behaviour of Wannier exciton
under center-of-mass quantization, while no-contradiction
with the results of reference [14] or with the hard sphere
model comes from the variational minimization [21].

Finally, we would like to underline that the present re-
sults give also an interesting contribution to the long last-
ing debate about adiabatic and non-adiabatic solutions for
exciton quantization in large quantum wells (see Ref. [16]
pp. 392–397 and 413–414).

4 Optical response in single
and multi-quantum wells

Let us consider a Wannier exciton confined in a single
quantum well of sample (B), with thickness L, and clad
between two infinite barriers. The even exciton envelope
function is:

Ψm(�r, Z; �K‖) = Nm gm(z, Z) ϕ1(r) ei �K‖·�R‖/
√

S (20)

(a)

(b)

Fig. 2. Lowest exciton eigenenergy (m = 1) as a function of
quantum well thickness for sample (A) and (B) are shown in
Figures 3a and 3b respectively. The four lowest eigenenergies
(m = 1, 3, 5, 7) are given in the insets.

Fig. 3. The ratio δ/L as a function of masses ratio (µ/M) is
shown by solid curve. The results obtained in reference [14] is
also reported (dashed curve) for sake of comparison.
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Fig. 4. Oscillator strengths of even exciton states as a function
of exciton quantum number (n = 1, 3, 5, . . . ) for sample (B),
and two well thicknesses: L = 260 nm (solid line) and L =
25 nm (dashed line). In the inset oscillator strengths for m ≤ 20
exciton states are shown.

where Nm are the normalization constants of mth exciton
state (m = 1, 3, 5, . . . ), and gm(z, Z) are the confinement
functions given in equation (14).

The oscillator strength for even states of Wannier exci-
ton, as a function of the center-of-mass quantum number
m is,

f (m)/S = g
EK

�ω
|

L/2∫
−L/2

Ψm(�r = 0, Z)dZ|2 (21)

where g is the band degeneracy, EK = 23 eV is the Kane’s
energy, and the resonant photon energy is �ωo = Egap +
Em where Egap is the electron energy gap and k‖ = 0.
The exciton envelope function for �r = 0 is:

Ψm (�r = 0, Z) =
Nm√
πa3

{cos (KmZ)

− cosh (PZ)
cos (KmL/2)
cosh (PL/2)

}
. (22)

In Figure 4 the oscillator strength for surface unit is com-
puted for two different slab thicknesses L = 260 nm
(L ≈ 16 a) and L = 25 nm (L ≈ 2 a), and for the pa-
rameter values of the sample (B).

Note that the thin slab converges to the oscillator
strength of the lowest exciton state faster than the thick
one. Moreover, the oscillator strength of the slab is es-
sentially embodied in the lower exciton energy states,
as it is clearly shown in the inset of Figure 4. In fact,
f (m)/S strongly decreases for the first six even states
(m = 1, 3, 5, 7, 9, 11); therefore, in order to take into ac-
count a rather extended exciton state basis set, these
states will be embodied in the optical spectra calculation.

The non-local exciton polarization, expanded in the
center-of mass basis set, is [15]:

�P
(

�K‖, Z
)

=
∑
m

L∫
0

dZ ′ χm( �K‖; Z, Z ′) �E
(

�K‖, Z ′
)

=
∑
m

So (ω)

Em( �K‖) − �ω − iΓNR (ω)
Ψ∗

m

(
�r = 0, Z; �K‖

)

×
L∫

0

dZ ′ Ψm

(
�r = 0, Z ′; �K‖

)
�E
(

�K‖, Z ′
)

(23)

where χm( �K‖; Z, Z ′) is the optical susceptibility for cu-
bic crystal, ΓNR(ω) is the non-radiative broadening, and
So(ω) embodies the Kane’s energy EK of the interband
transition, namely: So(ω) = g EK

ω2
e2

mo
. The exciton en-

ergy is:

Em( �K‖) = Egap + Em +
�

2

2M
K2

‖ . (24)

The Maxwell equation for S polarization, with X and Z
Cartesian axis parallel and normal to the slab surfaces
respectively ( �K‖‖x̂), is:

∂2Ey

∂x2
+

∂2Ey

∂z2
= −ω2

c2
Dy(x, z) (25)

where,
Ey(x, z) = Ey(z) eik‖x

and

Dy(x, z) = Dy(z) eik‖x = [εbEy(z) + 4πPy(z)] eik‖x,

∂2Ey

∂z2
+
[
ω2

c2
εb − k2

‖

]
Ey(z) = −4π

ω2

c2
Py(z), (26)

where the exciton-photon interaction (polariton) is char-
acterized by the same in plane wave vector �K‖ =
k‖ î values for the two particles. The former Maxwell
integral-differential equation can be transformed in an in-
tegral equation by using the Green’s function formalism:{

∂2

∂z2
+ k2

z

}
g(z, z′) = δ(z − z′) (27)

where

kz =
[
ω2

c2
εb − k2

‖

]1/2

,

whose solution is: g(z, z′) = 1
2ikz

eikz|z−z′|.
Finally, equation (26) can be given as a Lippmann-

Schwinger integral equation:

Ey(z) = Eo
y
(z)

− 4π
ω2

c2

∑
m

∫ ∫
g(z, z′) χm(z′, z′′) Ey(z′′)dz′dz′′. (28)

In Appendix B this integral equation in a quantum well
is exactly solved.
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( [
eiKd − (1 + ∆o(ω)) eikzd

] −∆−−(ω) eikzd

∆++(ω) eiKd
[
(1 + ∆o(ω)) eiKd − e−ikzd

]
)(

A
B

)
= 0. (33)

4.1 Generalized Kroening-Penney model

The optical dispersion curves of a MQWs can be obtained
by the generalized Kroening-Penney model. Since we are
interested into the optical response of the Wannier exci-
ton, let us take constant the background dielectric func-
tion (ε(z) = εb); in this case, the optical dispersion curves
show fully polaritonic character.

The electric fields in the left and right barrier of the
well are given by equation (7) of Appendix B, in the two
different limits:
Left

(Z → 0) Ey(z ≤ z′) = A eikzz

+ [A∆++(ω) + B (1 + ∆+−(ω))] e−ikzz (29a)

Right

(Z → L) Ey(z ≥ z′) = [A (1 + ∆−+(ω))

+B ∆−−(ω)] eikzz + B e−ikzz (29b)

where ∆ quantities, for real envelope function basis set,
are given by:

∆±∓(ω) = −ω2

c2

1
2ikz

∑
m

Sm(ω) ϕ
m

(±kz)

×
∑
m′

[(↔
I +

↔
M(ω)

)−1
]

m,m′
ϕm′(∓kz)

× e±ikzL/2∓ikzL/2 (30)

and ϕm(kz) =
L/2∫

−L/2

Ψm(�r = 0, z) eikzzdz is the Fourier

transform of the exciton envelope function computed for
�r = 0, while Sm(ω) = So(ω)

Em( �K‖)−�ω−i0+ . Notice, that
↔
I is

the unit matrix, while all the quantities necessary for com-
puting the ∆(ω) quantity of equation (30), are defined and
given in the explicit form in Appendix C.

The reflection and transmission coefficients for a single
quantum well are given by imposing the conditions A = 1
and B = 0, therefore:

rs(ω) = ∆++(ω) and ts(ω) = 1 + ∆−+(ω) (31a)

while the absorbance is:

As(ω) = 1 − |rs(ω)|2 − |ts(ω)|2. (31b)

Finally, by imposing the periodicity condition,

E(L)
y (z) eiKd = E(R)

y (z + d) (32)

and, noticing that ∆+−(ω) = ∆−+(ω) ≡ ∆o(ω), we ob-
tain:

{
A eikzz + [A∆++(ω) + B (1 + ∆o(ω))] e−ikzz

}
eiKz =

[A (1 + ∆o(ω)) + B ∆−−(ω)] eikz(z+d) + B e−ikz(z+d).

By separating forward and backward propagation waves,
the periodicity condition is given under 2×2 matrix form:

See equation (33) above.

Now, since the determinant of coefficient matrix is equal
zero, an implicit equation in K and ω is obtained:

(1 + ∆o(ω)) e2iKd −
{[

(1 + ∆o(ω))2 − ∆++(ω)∆−−(ω)
]

× eikzd + e−ikzd
}

eiKd + (1 + ∆o(ω)) = 0

that can be simplified:

cos (Kd) =
1
2
{[(1 + ∆o(ω))

−∆++(ω)∆−−(ω)
1 + ∆o(ω)

]
eikzd + e−ikzd

}
≡ f(ω) (34)

and finally, the polariton dispersion curves in explicit form
is: Kd = arcos [f(ω) ].

5 Optical properties of exciton in weak
confinement: numerical results

Let us consider a single quantum well of thickness about
two Bohr radii (L ≈ 2 aB). It is well-known, that for
this thickness value the Wannier exciton is close to the
so called 2D → 3D transition [15–17], where the exciton
behaviour is very sensitive to slab thickness value, while,
the exciton levels become strongly separated in energy.

The variational parameter values, adopted for the cal-
culation, are those of sample (B) for a well thickness
L = 25 nm, namely: a = 13.45 nm the exciton effec-
tive Bohr radius, and δ = 5.5 nm the exciton transition
layer depth. The mass ratio is µ/M = 0.11062, that is
an intermediate value between hydrogenic (µ/M → 0)
and positronium (µ/M = 0.25) limits. In this case, the
two lowest exciton states (m = 1, 3) have energy values:
E1 = Egap+εm=1 = 1.5118 eV and E3 = 1.5445 eV, where
Egap = 1.5 eV (close to the GaAs energy gap at T = 2 K◦),
while the oscillator strength ratio, between the first and
the second even exciton states, is: f (3)/f (1) = 1/10 (see
the inset of Fig. 4).

It is well-known, that the self-consistent solution of
the Maxwell equation gives the correct self-energy of the
radiation-matter interaction, and a non-radiation broad-
ening only should be added to the non-local dielectric
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Fig. 5. Reflection and transmission spectra for the lowest ex-
citon states (m = 1) of sample (b) computed for three different
values of incidence angle, namely: 0◦ 30◦ 60◦. Absorbance spec-
trum at normal incidence for m = 1, 3 exciton states is shown
in the inset.

function (see Eq. (23)). In the present calculation the
broadening is taken constant and rather small (ΓNR =
40 µeV), roughly of the same order of magnitude of the
radiation broadening (about 15 µeV).

The optical spectra for S polarization, computed in
the range of the lowest exciton energy state (m = 1), are
shown in Figure 5 for three different angles of incidence,
namely: θ = 0◦, 30◦ and 60◦ degrees. The reflectivity in-
creases by increasing the incident angle value, while an
opposite behaviour is shown for the transmittivity. The
absorbance spectrum, computed for energy range close to
the first and the third exciton states at normal incidence,
is shown in the inset of Figure 5. The intensity ratio scales
as the corresponding oscillator strength values.

Since the optical response shows the correct behaviour
as a function of the incidence angle of the light, we can be
confident that also the dispersion curves of MQWs under
Bragg condition, that will be discussed in the next sec-
tion, should describe the correct physical behaviour of the
exciton-polariton.

5.1 Polariton dispersion in MQWs Bragg reflector

A multi-quantum wells under Bragg conditions is a pro-
totype of 1D resonant photonic crystals for quantum well
number N → ∞. Recently, Cho (Ref. [2]) has pointed
out that the optical response for very thin quantum wells
undergoes a transition from super-radiant regime to the
1D polariton gap as a function of quantum well number
N . This interesting phenomenon was revisited, two years
later, by Cho and one of the present author (see Ref. [3]).

Now, in the present work we have extended the study
of 1D resonant photonic crystal (N → ∞) to the case
of thick quantum wells, where, due to the center-of mass
quantization, rather dense exciton states can appear in the
optical spectrum of the system, and competition between

Fig. 6. Photonic energy gap, in resonance with the lowest
exciton state m = 1, is shown. The radiative energy can be
observed in the inset, where an enlarged energy scale is used
for the central dispersion curve.

polariton splittings and optical gap can give the interest-
ing phenomenon of the gap enhancement or inhibition.

Let us consider a quantum well with the same parame-
ter values given in the former section where the center-of-
mass exciton levels are well separated in energy. The po-
lariton dispersion curves are computed by equation (34),
along Γ → Z direction ( �K‖ = 0), and by taking the non-
radiation broadening value: ΓNR = 0.

When the former quantum well is embod-
ied in a Bragg’s reflector with the periodicity
d1 = λ1/2 = 129.763 nm, computed for light en-
ergy in resonance with the m = 1 exciton level, it is
well-known [1–3] that the periodicity reduces the straight
line of the light dispersion in a segmented line (confined
into the first Brillouin zone), while the exciton-photon
interaction opens the optical gap in the correspondence
of the m = 1 exciton energy. In fact, for photon energies
close to the lowest exciton energy, the characteristic three
branches dispersion curves [1,3] are shown in Figure 6.

The central dispersion curve is in coincidence with the
m = 1 exciton-polariton energy, and its behaviour is re-
ported in an expanded energy scale in the inset, where
the radiative self-energy value can be evaluated (15 µeV).
Notice, that this value is in sound agreement with optical
response results obtained for a SQW [1–3].

The present result is completely analogous to that ob-
tained for thin quantum wells (see Refs. [3,4]), while many
polariton splittings open in correspondence with higher
energy exciton states (m > 1) [11].

In Table 1 the optical gap for m = 1 and the polariton
splitting at higher energy states (m > 1) are given.

Now, we can move the optical gap at higher energy
by taking the Bragg periodicity in resonance with m = 3
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Table 1. Polariton splitting energies for even exciton states
(m = 1, 3, 5, 7, 9, 11), and for Bragg condition in resonance
with m = 1 exciton state.

m = 1 gap m = 3 m = 5 m = 7 m = 9 m = 11

∆E(meV) 6.769 0.132 0.037 0.018 0.011 0.006

Table 2. Polariton splitting energies for even exciton states,
and for Bragg condition in resonance with m = 3 exciton state.

m = 1 m = 3 gap m = 5 m = 7 m = 9 m = 11

∆E(meV) 0.357 4.209 0.058 0.022 0.012 0.007

exciton level, namely: d3 = λ3/2 = 127.017 nm. The dis-
persion curves, computed for a large range of light energy
are shown in Figure 7a, while in Figure 7b the characteris-
tic three branches dispersion curves, close to the photonic
gap, and the polaritonic splittings for m = 1, 5 exciton
states are reported in an enlarged energy scale.

The energy gap for m = 3 is about 4.21 meV, that is
lower than that observed for m = 1, and also the radia-
tion self-energy values, not reported here, are smaller than
the present ones. Polariton splittings, and energy gap are
given in more detail in Table 2.

Notice, that the higher energy polariton splittings are
systematically higher than those computed before (see
Tab. 1), while for higher m-value the convergence at the
same polariton splitting is reached rather slowly. More-
over, it is interesting to notice that, while the oscillator
strength ratio between the two levels is 1/10, as shown
before for a SQW (see the inset of Fig. 4), the ratio be-
tween their radiation broadenings is now greater than 10/1
due to the Bragg effect in resonance with m = 3 exciton
state.

The optical results shown before are obtained for a
quantum well thickness as large as two Bohr radii, there-
fore in the zone of the 3D − 2D transition of Wannier
exciton, very close to the quantum well limit. Now, let us
consider a Wannier exciton under center-of-mass quanti-
zation with quantum well thickness many times the Bohr
radius. It is well known that for rather large quantum
wells, exciton levels can become closer in energy than the
non-radiative broadening value, and, therefore, their opti-
cal spectrum, due to a convolution of many exciton states,
can appear as an asymmetric exciton peak, with a long tail
towards the high energy side of the spectrum [18,19]. In
this limit, there is no point by taking the Bragg periodic-
ity in resonance with a particular exciton level, but it is
sufficient to choose the periodicity in the energy range of
the convolution. For MQWs close to this condition, strong
distortion in the polaritonic dispersion curves is expected,
due to the competition between optical gap and polariton
splitting effects.

In fact, let us take as parameter values of the single
well: L = 5 a = 80 nm, a = 16 nm, δ = 13 nm, and
Bragg periodicity of about d = 130.9721 nm, that shows
light energy resonance at �ωo = 1.4979 eV that drops be-
tween m = 1 and m = 3 exciton levels. In this case, by

(a)

(b)

Fig. 7. Polariton dispersion curves of a quantum well Bragg
superlattice for resonant light energy in coincidence with the
m = 3 exciton state are shown in (a). Photonic energy gap, in
resonance with m = 3 exciton state, and polariton splittings
for m = 1, 5 are shown in an enlarged energy scale in (b).

performing calculation for the lowest energy exciton state
(m = 1) the dispersion curves show three branches (with
energy gap Egap = 2.7 meV) as reported in Figure 8. This
dispersion curves look very similar to those discussed be-
fore (Figs. 6 and 7b), and only a small distortion in the
central branch appears. Indeed, by comparing this upward
distortion with downward one, shown in the inset of Fig-
ure 6, we can derive the sign of the detuning between
exciton and Bragg energy of the system simply analyzing
the different dispersion behaviours (up or down) of the
central polariton curve.

Let us perform calculation by taking into account the
six lowest exciton states (m =1–11) of the quantum well.
The results are shown in Figure 9 in the range of reso-
nant photon energy; in this case at variance of the usual
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Fig. 8. Dispersion curves of a quantum well Bragg superlattice
computed for rather thick quantum well L = 5 a, for period-
icity out of resonance with respect of the exciton states. The
computation take into account the lowest exciton state (m = 1)
only.

Fig. 9. Dispersion curves of a quantum well Bragg superlattice
computed for rather thick quantum well L = 5 a, for period-
icity out of resonance with respect to the exciton states. The
computation take into account the lowest six energy exciton
states (m =1–11).

three dispersion curves a more complicated pattern of four
curves is observed. While, in correspondence of m = 1 and
m = 3 exciton states, normal polariton splitting values
are observed (of 5.50 meV and 1.55 meV respectively),
a rather small photonic gap (about 0.77 meV) appears,
in the correspondence of the resonant photon energy �ωo

(probably, this value is very close to the first odd exciton
state m = 2). Therefore, the energy gap effect is strongly
reduced by the synergic effect of the two polariton states
located at lower and higher energy respectively.

Finally, “extreme” optical properties should be ob-
tained also for the case of a finite number of quantum

wells (N < 80) in the zone of the optical super-radiance
effect. In this case it should be possible to obtain a huge
enhancement of the radiative self-energy also for odd ex-
citon states(m = 2, 4, 6, . . . ) [21].

6 Conclusions

In conclusion, a variational exciton envelope function, well
suited for describing exciton behaviour under center-of-
mass quantization, is revisited [15]. New results are ob-
tained for the intrinsic dead layer depth, and for the spa-
tial dispersion behaviour of Wannier exciton. A contri-
bution to the long lasting debate, present in the litera-
ture [14–16], concerning the adiabatic and non-adiabatic
approximations, is given.

Optical properties of a SQW and dispersion curves of
a MQWs under λ/2 Bragg condition are computed in the
semiclassical framework, and in effective mass approxi-
mation, by self-consistent solution of Schroedinger and
Maxwell equations. This microscopic solution is free from
“fitting” parameter values, and from ad hoc physical as-
sumptions (dead-layer and ABCs).

In principle, the control of the periodicity in a reso-
nant λ/2 Bragg reflector allows to perform the tailoring
of the optical gap of the system by modulating the real
part of the non-local dielectric function of Wannier exci-
ton [3]. Obviously, in real systems also the modulation of
the background dielectric function should be taken into
account, and this contribution can enrich the possibilities
of the optical tailoring of the model.

The case of the optical gap in correspondence of higher
excited states is pointed out by selected numerical exam-
ples. Indeed, the inhibition of the photonic gap, induced
by the competition with polariton states, underlines the
new possibility in the gap tailoring shown by this class of
resonant photonic crystals.

The authors are indebted with the Project FIRB-MIAO of
MIUR of Italy (WP2.2-task3) for financial support, and with
Dr. L. Pilozzi for the critical reading of the manuscript.

Appendix A

In order to minimize the variational energy of equa-
tions (16a) and (16b) of the text, we must to compute
the following quantities:

G0(z) = g0(z) +
[
g1(z)F 2

e
(z) + g2(z)F 2

o
(z)
]

− 2 [g3(z)F
e
(z) − g4(z)Fo(z)] − 2g5(z)F

e
(z)F

o
(z)

(A.1)

G1(z) = −K2g0(z) + P 2
[
g1(z)F 2

e
(z) + g2(z)F 2

o
(z)
]

+
(
K2 − P 2

)
[g3(z)F

e
(z) − g4(z)F

o
(z)]

− 2P 2g5(z)F
e
(z)F

o
(z); (A.2)
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[A(z)G2(z) + 2B(z)G3(z)] = −P 2 A(z)G4(z)

+
M(z)

sinh (P (Z2(z) − Z1(z)))
{2B(z)Re(z) + A(z) [Se(z)

+2Re(z) coth (P (Z2(z) − Z1(z)))]}
+

N(z)
sinh (P (Z2(z) − Z1(z)))

{2B(z)Ro(z) + A(z) [So(z)

+2Ro(z) coth (P (Z2(z) − Z1(z)))]} (A.3)

where, the latter term, connected with the non-adiabatic
contribution, is computed by the following quantities:

G4(z) =
[
g1(z)F 2

e
(z) + g2(z)F 2

o
(z)
]− [g3(z)F

e
(z)

−g4(z)Fo(z)] − 2g5(z)Fe(z)Fo(z); (A.4)

Se(z) =
(
α2

h
P 2 − α2

eK
2
)
sinh (PZ2(z)) cos (KZ1(z))

+
(
α2

h
K2 − α2

eP
2
)
sinh (PZ1(z)) cos (KZ2(z))

− 2αeαhKP [cosh (PZ1(z)) sin (KZ2(z))
− cosh (PZ2(z)) sin (KZ1(z))]

So(z) =
(
α2

h
P 2 − α2

eK
2
)
cosh (PZ2(z)) cos (KZ1(z))

+
(
α2

h
K2 − α2

eP
2
)
cosh (PZ1(z)) cos (KZ2(z))

− 2αeαhKP [sinh (PZ1(z)) sin (KZ2(z))
− sinh (PZ2(z)) sin (KZ1(z))]

Re(z) = P cosh (P (Z2(z) − Z1(z)) Fe(z)
− [K (αe sinh (PZ2(z)) sin (KZ1(z))
+αh sinh (PZ1(z)) sin (KZ2(z)))]
− [P (αe cosh (PZ1(z)) cos (KZ2(z))
+αh cosh (PZ2(z)) cos (KZ1(z)))]

Ro(z) = P cosh (P (Z2(z) − Z1(z)) Fo(z)
− [K (αe cosh (PZ2(z)) sin (KZ1(z))
+αh cosh (PZ1(z)) sin (KZ2(z)))]
− [P (αe sinh (PZ1(z)) cos (KZ2(z))
+αh sinh (PZ2(z)) cos (KZ1(z)))]

M(z) = Fe(z) g1(z) − g3(z) − Fo(z) g5(z);

N(z) = Fo(z) g2(z) − g4(z) − Fe(z) g5(z). (A.5)

Finally, all the former quantities are computed by the
functions g�(z) for � = 0, 1, 2, 3, 4, 5, that are given by,

g0(z) =
[
Z

2
+

1
4K

sin (2KZ)
]Z2(z)

Z1(z)

;

g1(z) =
[
Z

2
+

1
4K

sinh (2PZ)
]Z2(z)

Z1(z)

;

g2(z) =
[
−Z

2
+

1
4P

sinh (2PZ)
]Z2(z)

Z1(z)

;

g5(z) =
[

1
4P

cosh (2PZ)
]Z2(z)

Z1(z)

; (A.6)

g3(z) = [P sinh (PZ) cos (KZ)

+K cosh (PZ) sin (KZ)]Z2(z)
Z1(z) /

(
P 2 + K2

)
;

g4(z) = [P cosh (PZ) cos (KZ)

+K sinh (PZ) sin (KZ)]Z2(z)
Z1(z) /

(
P 2 + K2

)
.

Now, it is interesting to underline, that in the limit of
z → L all the functions G�(z) → 0 for � = 0, 1, 4, while
for � = 2, 3 some divergent quantities appear, that can
be computed by grouping terms in order to obtain finite
contributions, in fact:

lim
z→L

Re(z)
sinh (P (Z2(z) − Z1(z)))

=

αe − αh

2P

(
P 2 + K2

)
sinh (PZ0) cos (KZ0) (A.7a)

lim
z→L

Ro(z)
sinh (P (Z2(z) − Z1(z)))

=

αe − αh

2P

(
P 2 + K2

)
cosh (PZ0) cos (KZ0) (A.7b)

while, the limit values for:

lim
z→L

M(z)
sinh (P (Z2(z) − Z1(z)))

and

lim
z→L

N(z)
sinh (P (Z2(z) − Z1(z)))

are obtained form the following equations:

Fe(z → L) = cosh (PZ0) cos (KZ0)

+
K

P
sinh (PZ0) sin (KZ0) (A.8a)

Fo(z → L) = sinh (PZ0) cos (KZ0)

+
K

P
cosh (PZ0) sin (KZ0) (A.8b)

and the corresponding limit values of the functions:

lim
z→L

g�(z)
sinh (P (Z2(z) − Z1(z)))

� = 1, 2, 3, 4, 5.

lim
z→L

M(z)
sinh (P (Z2(z) − Z1(z)))

=

Fe(z → L)
cosh (2PZo) + 1

2P
− cosh (PZo) cos (KZo)

P

− Fo(z → L)
sinh (2PZo)

2P
(A.9a)

lim
z→L

N(z)
sinh (P (Z2(z) − Z1(z)))

=

Fo(z → L)
cosh (2PZo) − 1

2P
− sinh (PZo) cos (KZo)

P

− Fe(z → L)
sinh (2PZo)

2P
, (A.9b)



A. D’Andrea and D. Schiumarini: Bragg quantum wells in weak confinement regime 99

odd solutions can be computed with the same procedure.
Notice, that the first momentum of the exciton

Hamiltonian can be computed by two simple 1D inte-
grations respect with the relative e–h distance z. Finally,
the minimization of the effective Bohr radius a is usu-
ally very well defined, while the minimum with respect
of the transition layer depth δ = 1/P is usually very
shallow. Notice, that in the present final equations do
not appear the numerically tedious 0/0 terms, due to the
limit z = ze − zh → L. These terms, as pointed out by
Combescot et al. in reference [14], make the numerical ac-
curacy of the minimization not well suited for obtaining
sensible values of the transition layer depth.

Appendix B

The electric field in the quantum well are given by the
following Lippmann-Schwinger equation (Eq. (28) of the
text):

Ey(z) = Eo
y(z)

− 4π
ω2

c2

∑
m

∫ ∫
g(z, z′) χm(z′, z′′) Ey(z′′)dz′dz′′ (B.1)

where Eo
y
(z) is the general homogeneous solution.

The electric field in the quantum well is given by the
general homogeneous solution plus a particular heteroge-
neous solution:

Ey(z) = A eikzz + B e−ikzz

− 4π
ω2

c2

∑
m

L∫
0

L∫
0

g(z, z′) χm(z′, z′′) Ey(z′′)dz′dz′′ (B.2)

and, by substituting the exciton susceptibility, we obtain:

Ey(z) = Eo
y
(z) − 4π

ω2

c2

∑
m

Sm(ω)

L∫
0

g(z, z′) Ψ∗
m

(z′) dz′

×
L∫

0

Ψm(z′′) Ey(z′′)dz′′ (B.3)

where,

Sm(ω) =
So (ω)

Em( �K‖) − �ω − i0+
.

Now, applying the operator
L∫
0

dz Ψm′(z), we obtain the

system:
∑
m

[δm′,m +Mm′ m(ω)] Im(ω) = Io
m′ (ω)

= A ϕm′(kz) + B ϕm′(−kz) (B.4)

where ϕm′(kz) =
L∫
0

eikzz Ψm′(z)dz , and the unknown in-

tegrate quantities are:

Im(ω) =
L∫
0

Ψm(z) Ey(z)dz, while the polaritonic matrix

elements are:

Mm′m(ω) =
ω2

c2
So(ω)

L∫
0

L∫
0

Ψm′(z) g(z, z′) Ψ∗
m

(z′) dz′dz

×
[
Em( �K‖) − �ω − i0+

]−1

(B.5)

and the solution of the system is:

Im(ω) =
∑
m′

[(↔
I +

↔
M(ω)

)−1
]

mm′

× [A ϕm′(kz) + B ϕm′(−kz)]. (B.6)

Finally, by substituting this result into the electric field of
equation (B2), we obtain:

Ey(z) =A

{
eikzz − 4π

ω2

c2

∑
m

Sm(ω) Gm(z)

×
∑
m′

[(↔
I +

↔
M(ω)

)−1
]

m m′

ϕm′(kz)

}

+ B

{
e−ikzz − 4π

ω2

c2

∑
m

Sm(ω) Gm(z)

×
∑
m′

[(↔
I +

↔
M(ω)

)−1
]

m m′

ϕm′(−kz)

}

(B.7)

where: Gm(z) =
L∫
0

g(z, z′) Ψ∗
m

(z′) dz′, and g(z, z′) =

1
2ikz

eikz|z−z′|.

Appendix C

The dispersion curves of the superlattice system can be
computed from equation (34) of the text. The even exciton
envelope function for �r = 0 is real for Z-values : −L/2 <
Z < L/2 (see Eq. (21) of the text),

Ψm (�r = 0, Z) =
Nm√
πa3

{
cos (kmZ)

− cosh (PZ)
cos (kmL/2)
cosh (PL/2)

}
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where km is the eigenvalues of equation (11) of the text.
Its Fourier transform is given by simple algebra,

ϕm (kz) =

L∫
0

Ψm (�r = 0, Z) eikzZ

=
Nm√
πa3

{
eikzZ [A (Z) + ikzB (Z)]

}Z=L/2

Z=−L/2

(C.1)

where,

Am(Z) =
km

k2
m − k2

z

sin (kmZ) − P αm

k2
z + P 2

sinh (PZ)

Bm(Z) =
1

k2
m − k2

z

cos (kmZ) +
αm

k2
z + P 2

cosh (PZ)

αm = cos(kmL/2)/cosh(PL/2)

and,

ϕm (kz) = eikzL 2Nm√
πa3

{[Am (L/2) cos(kzL/2)

−kzBm (L/2) sin(kzL/2)]} = eikzL ϕ̃m (kz) (C.2)

the phase factor takes into account the translation of L/2,
while the transformed function ϕ̃m is a real quantity.

The polaritonic matrix element of equation (B5) is:

Mm′,m (ω) =
ω2

c2
Sm(ω)

L∫
0

dZ Ψm′ (�r = 0, Z)

×
⎧⎨
⎩eikzZ

Z∫
0

e−ikzZ′
Ψ∗

m
(�r = 0, Z ′) dZ ′

+ e−ikzZ

L∫
Z

eikzZ′
Ψ∗

m
(�r = 0, Z ′) dZ ′

⎫⎬
⎭ Sm (ω)

=
ω2

c2
Sm (ω)

[
M>

m,m′ + M<
m,m′

]

and, since:

ϕm′(−kz) ϕ∗
m

(−kz) = ϕ̃m′(−kz) ϕ̃m(kz)

=
[
M>

m′ m(ω)
]∗ + M<

m′ m(ω)

we obtain the polariton matrix in the final form:

Mm′ m(ω) =
ω2

c2
{ϕ̃m′(−kz) ϕ̃m(kz)

+2i Im
[
M>

m′ m

]}
Sm(ω) (C.3)

where real and imaginary part are separated.

Now, by some simple algebra, we obtain:

Im
[
M>

m′,m(ω)
]

=
2NmNm′

πa3
{[Am(L/2) sin(kzL/2)

+kzBm(L/2) cos(kzL/2)] [Am(L/2) cos(kzL/2)

−kzBm(L/2) sin(kzL/2)] − kz

[
1

2 (k2
m − k2

z)

×
(

sin((km′ − km)L/2)
km′ − km

+
sin((km′ + km)L/2)

km′ + km

)

+
αm

(P 2 + k2
z) (P 2 + k2

m′)
(P sinh (PL/2) cos (km′L/2)

+km′ cosh (PL/2) sin (km′L/2)) − αm′

(k2
m − k2

z) (P 2 + k2
m)

× (P sinh (PL/2) cos (kmL/2) + km cosh (PL/2)

× sin (kmL/2)) − αmαm′

4 (P 2 + k2
z)

(L + sinh(PL))
]}

(C.4)

while the product of the Fourier transform is,

ϕm′(−kz) ϕ∗
m(−kz) =

4NmNm′

πa3

× {[Am′(L/2) cos(kzL/2)− kzBm′(L/2) sin(kzL/2)]
× [Am(L/2) cos(kzL/2)− kzBm(L/2) sin(kzL/2)]}.

(C.5)

Notice, that the polaritonic matrix is a product of the
self-energy,

Σ
m′m(ω) =

ω2

c2
So(ω)

L∫
0

L∫
0

Ψm′(z) g(z, z′) Ψ∗
m

(z′) dz′dz

(C.6)
plus a diagonal matrix of the energy denominators,

Sm m′ =
[
Em( �K‖) − �ω − i0+

]−1

δm,m′ .

Now, let us consider the inverted matrix:

[(↔
I +

↔
M(ω)

)−1
]

m m′

= Sm m(ω)
[( ↔

S−1(ω)

+
↔
Σ(ω)

)−1
]

m m′

= Sm m(ω) Pm m′(ω)

and, the polariton matrix is:

Pm′ m(ω) =
[
Em′(K‖) − �ω − iΓNR

]
δm′ m + Σm′ m(ω)

(C.7)
where the self-energy matrix is:

Σm′ m(ω) = Σ
′
m′ m(ω) + iΣ′′

m′ m(ω)

=
ω2

c2

So(ω)
2kz

{
Im
[
M>

m′,m

]
− i ϕ̃m′(−kz) ϕ̃m(kz)

}
.

(C.8)
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Finally,

∆±∓(ω) = −ω2

c2

So(ω)
2kz

e±ikzL/2∓ikzL/2

×
∑
m m′

ϕ̃m(±kz)
( ↔

P−1

)
m m′

ϕ̃m′(∓kz). (C.9)

Therefore, the optical response of a single quantum well
and the dispersion curves of λ/2 Bragg system can be
computed by equations (31) and (34) respectively of the
text.
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